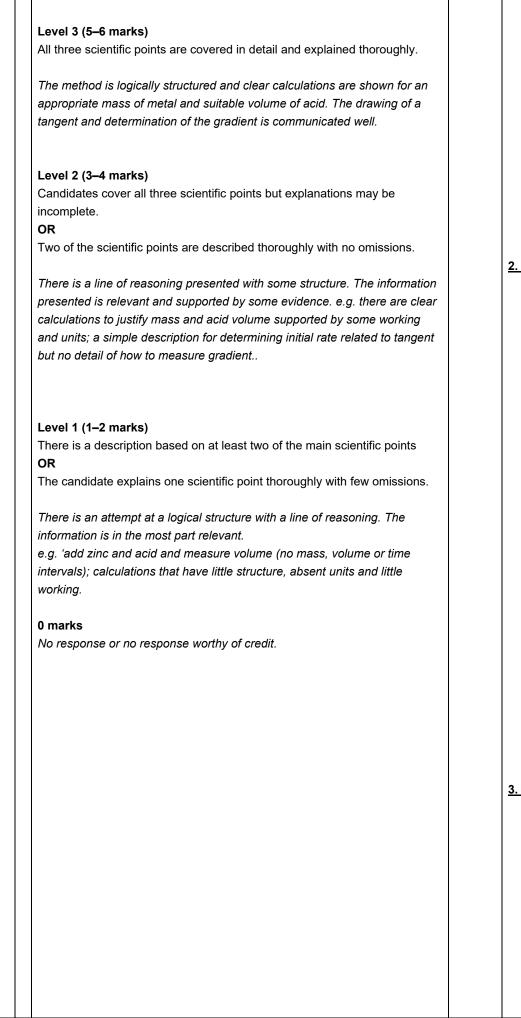

Mark scheme – Reaction Rates

	Questi on		Answer/Indicative content	Marks	Guidance
1	а	i	Use of graph paper linear numerical scale chosen for x axis AND Time / s added as label AND ALL points plotted correctly √	1(AO2. 4×1)	ALLOW Time (s) OR Time in s ALLOW seconds OR sec OR secs Tolerance ± 1 small square Point at 0,0 NOT required ALLOW up to 3 plotting errors <u>Examiner's Comments</u> Most candidates obtained this mark, some lost the mark because they did not use a linear scale or provide units.
		i i	Anomaly point at 80 s circled √	1(AO2. 4x1)	ALLOW one more anomalous point NOT on the curve drawn in (iii) Examiner's Comments Nearly all the candidates obtained this mark
		i i i	Line smooth curve using all points EXCEPT point at 80 s √	1(AO3. 1)	Examiner's Comments Nearly all the candidates obtained this mark
	b		Initial slope is steeper AND curve levels off at an earlier time \checkmark Same volume of gas produced (58 cm ³) \checkmark	2(AO2. 8×2)	Tolerance ± 1 small square Examiner's Comments Many students did not sketch this curve or sketched a curved that was less steep and did not finish at 58cm ³ .
	с		Rate (Acid) concentration decreases. √ Collisions	2(AO 1.1×2)	IGNORE amount of acid decreases, response must imply a volume and NOT area, e.g. fewer particles/molecules/ions in same space /volume


Т	T			
		Fewer collisions per second OR less frequent collisions √		
				'fewer collisions' alone is not sufficient (no rate)
				Examiner's Comments
				Many responses detailed why the graph was steep at the beginning, rather than answering the question. Those that did explain the decrease often omitted the words concentration and frequency so the majority did not gain 2 marks. A large number of candidates discussed particles "losing energy" and "less successful collisions" so were not given any marks.
 4	i	Catalyst lowers the activation energy (by providing an alternative route) √ A greater proportion of molecules have more energy greater than/equal to activation energy √	2(AO1. 2×2)	ALLOW 'more' for 'greater proportion' ALLOW more molecules have sufficient energy to react IGNORE (more) successful collisions <u>Examiner's Comments</u> Most candidates scored the first marking point but many did not achieve the second marking point as their explanations were too vague.
	i	Reactants have different physical states √	1(AO2. 1)	ALLOW idea that copper(II) sulfate solution is homogeneous in relation to the acid, but heterogeneous in relation to the zinc Examiner's Comments Almost half of the candidates answered this question correctly, the remainder did not realise that the question gave them the answer to the

				state that the copper sulphate solution was in. Many answers stated that it could be solid or aqueous, so difficult to classify.
	Total		10	
				FULL ANNOTATIONS MUST BE USED THROUGHOUT
	Boltzmann Number of molecules	n distribution 3 marks		NOTE: Look for marking criteria within annotations on Boltzmann distribution diagram
	Curve			the curve
2	Labels Curves for	Curve starts within one small square of origin AND curve does not touch x axis at high energy AND curve does not increase by more than one small square at higher energy ✓ Axes labels correct: • Number of molecules AND Energy ✓	4	For labels, ALLOW number of particles ALLOW amount of molecules/particles IGNORE number of atoms ALLOW kinetic energy IGNORE enthalpy for energy
		Drawing of two curves with higher and lower temperature clearly identified in diagram or text AND higher <i>T</i> maximum to right AND at least one small square lower than lower <i>T</i> max \checkmark		IGNORE curves meeting at higher energy BUT DO NOT ALLOW crossing over by more than one small square
	Explanatio	on 1 mark More molecules have energy greater than Ea OR Greater area under curve above Ea √ Could be in diagram		ALLOW more molecules have the energy to react IGNORE more successful collisions OR collide more frequently DO NOT ALLOW explanation is in terms of two activation energies (i.e. 'catalyst explanation)

			Examiner's Comments
	Total	4	
3	(Increase in pressure) increases the rate and because molecules are closer together (1) so there are more collisions per unit time (1)	2	allow more particles per unit volume not molecules move faster or have more energy
	Total	2	

				Labelling of the axes was a common cause of error. Some candidates showed two curves, confusing the effect of a catalyst with temperature. Most candidates knew that the activation energy was lower with a catalyst than without. A significant number of candidates limited their explanations to 'successful collisions' without referring to more molecules exceeding the lower activation energy in the presence of catalyst. The best responses secured all four marks from a well-
	b	Two max √√from: Lower temperatures / less heat / less thermal energy Less fossil fuels / oil / coal / gas / non-renewable fuels Reduces CO₂ emissions 	2	drawn and annotated graph.IGNORE lower pressures OR less energy (in question)IGNORE just 'less fuel'IGNORE just 'less fuel'IGNORE less global warming IGNORE less greenhouse gases, less CO, less NO CO2 requiredExaminer's Comments There were many excellent responses in terms of lower temperature, use of less fossil fuels and a reduction in emission of carbon dioxide as a contributor to global warming.Weaker responses lacked precision and often repeated information supplied in the question about less energy demand.
		Total	6	
5		Please refer to marking instructions on page 5 of mark scheme for guidance on how to mark this question.	6	Indicative scientific points <u>1. Method</u>

- measure mass of (excess) zinc (using 2 decimal place balance)
- measure volume of hydrochloric acid (using measuring cylinder)
- mix zinc and acid in flask
- measure gas volume at time intervals

2. Calculations

- moles of hydrogen
 72/24000 = 0.00300
 mol
- minimum mass of zinc
 - 0.003 × 65.4 = 0.20 g
- moles of hydrochloric acid $Zn + 2HCI \rightarrow ZnCl_2 + H_2$
 - 0.00300 × 2 = 0.00600 mol
 - volume / concentration of acid If [HCl(aq)] = 0.1 mol dm⁻³ appropriate volume of acid = $0.006 \times 1000/0.1$ = 60 cm³ If [HCl(aq)] ≥ 0.3 mol dm⁻³, too low (≤ 20 cm³) If [HCl(aq)] ≤ 0.03 mol dm⁻³ too high (≥ 200 cm³)

3. Processing results

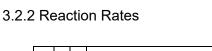
- Plot a graph of volume against time
- Draw a tangent at t =
 0
- Gradient of tangent = initial rate
- Gradient = volume / time

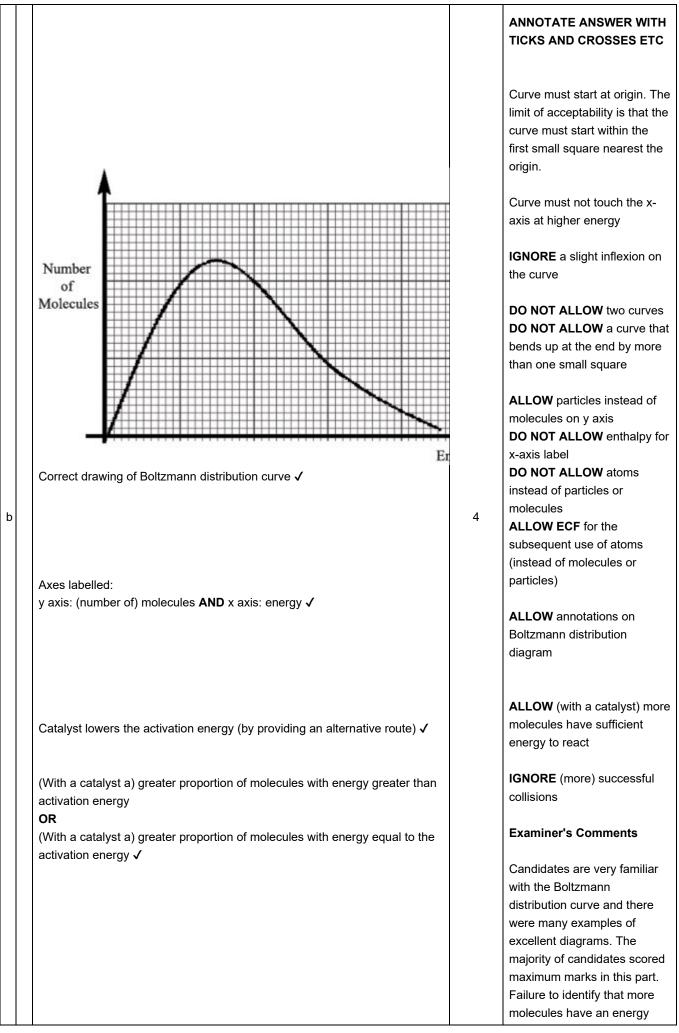
Examiner's Comment:

This question was marked using a level of response mark scheme and relatively few candidates were able to achieve Level 3. Many vague and rambling responses failed to mention the basic requirement to measure the volume of gas at regular time intervals. Some preferred to record the change in mass and ignored the diagram with a labelled gas syringe, while some carried out the experiment in a measuring cylinder. The question advises candidates to show working in their calculations but many omitted calculations from their answer. The question asked for an explanation of how the results could be processed graphically but this section was often lacking detail. Level 1 responses usually included the measurement and mixing of reactants and an attempt at processing the results by plotting a graph but further detail was missing. Candidates achieving Level 2 usually included a calculation of the moles of reactants and a more detailed description of how to process the results. Some excellent Level 3 responses included a full calculation of the mass of zinc and volume of hydrochloric

					acid required for the experiment.
			Total	6	
					ANNOTATE ANSWER WITH TICKS AND CROSSES
					IGNORE state symbols.
			$\frac{E_{a}}{E_{c}}$ without catalyst E_{a} : without catalyst E_{c} : with catalyst E_{c} : with catalyst		ΔH : DO NOT ALLOW $-\Delta H$ ALLOW this arrow even if it has a small gap at the top and bottom i.e. does not quite reach reactant or product line
6	а	i	$\frac{\Delta H}{Progress of reaction}$ Zn and H ₂ SO ₄ on LHS AND ZnSO ₄ + H ₂ on RHS \checkmark	3	E_a : ALLOW no arrowhead or arrowheads at both ends of activation energy line The E_a line must point to maximum (or near to the
			Δ <i>H</i> labelled with product below reactant AND arrow downwards √		maximum) on the curve OR span approximately 80% of the distance between reactants and maximum regardless of position ALLOW AE or A _E for <i>E</i> _a
			$E_{\rm a}~$ AND $E_{\rm c}$ correctly labelled with $E_{\rm c}$ below $E_{\rm a}$ \checkmark		Examiner's Comments
					Many candidates are well- prepared for this type of question however there are still some issues regarding the use of double headed arrows to indicate an enthalpy change. Whilst allowed by the examiners for showing
					activation energies, a correct single headed arrow was required to illustrate ΔH . A small proportion of candidates
					omitted hydrogen as a product, despite it being stated in the question.

				Examiner's Comments
				Candidates are very familiar with the Boltzmann distribution curve and there were many examples of excellent diagrams. The majority of candidates scored maximum marks in this part. Failure to identify that more molecules have an energy greater than the activaction energy when a catalyst is used, was a common reason why only three marks were scored.
				Many possible responses but in practice it is likely that examples will be few, e.g. Fe AND N ₂ + $3H_2 \rightarrow 2NH_3$ V ₂ O ₅ /Pt AND 2SO ₂ + O ₂ \rightarrow 2SO ₃ H ₂ SO ₄ /H ₃ PO ₄ AND C ₂ H ₄ + H ₂ O \rightarrow C ₂ H ₅ OH Hydrogenation of an alkene: e.g. Ni AND C ₂ H ₄ + H ₂ \rightarrow C ₂ H ₆ Esterification: e.g. H ₂ SO ₄ AND CH ₃ COOC + C ₂ H ₅ OH \rightarrow CH ₃ COOC ₂ H ₅ + H ₂ O ALLOW multiples for equation
b	i	Catalyst (name or correct formula) AND balanced equation for the reaction catalysed √	1	Note: the reaction chosen must be a feasible industrial reaction. If you see an alternative from the list above please contact your TL Examiner's Comments
				Most candidates were able to provide an equation for an industrial process with a suitable catalyst. The most frequent correct response was the use of Fe in the Haber process. Other common responses included the use of an acid catalyst for the preparation ethanol from ethene and Ni for the hydrogenation of an alkene.

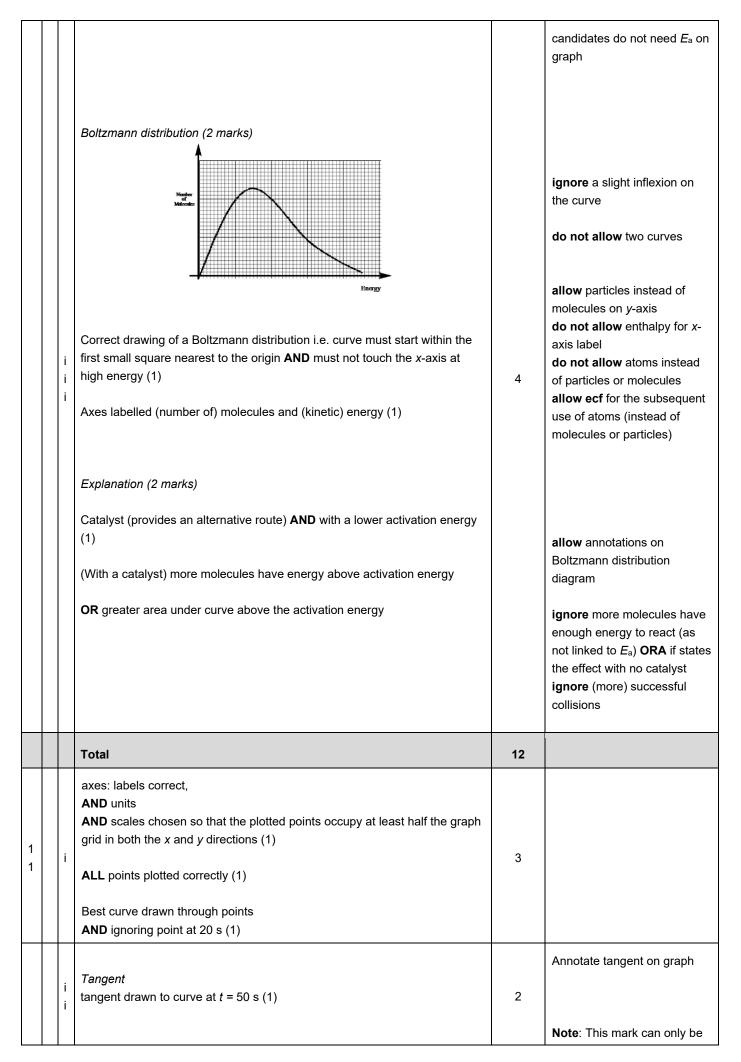

			Any two from:		IGNORE catalyst not used up in reaction IGNORE catalyst can be re- used IGNORE lower activation energy IGNORE cheaper IGNORE less greenhouse gases OR reduces global warming
		i	lower energy demand OR uses less fuel OR reduces CO₂ emissions ✓ (different reactions can be used with) greater atom economy OR less waste OR can reduce use of toxic solvents OR can reduce use of toxic reactants ✓ (catalysts are often enzymes) generating specific products ✓	2	ALLOW increases atom economy ALLOW reduce use of hazardous / toxic / harmful / poisonous chemicals Examiner's Comments The majority of candidates were able to provide two suitable examples of how catalysts increase the sustainability of chemical processes. The mark scheme allowed a variety of different responses that reflected the specification statements being assessed. The strongest responses focussed on the use of lower temperatures and reduced CO ₂ emissions. Reference to alternative processes with a better atom economy was also frequently seen.
7	а	i	Total	10	DO NOT ALLOW water or steam or CO ₂ evaporates Examiner's Comments Candidates who failed to state that the gas being lost was


				mark for this question. Vague answers relating to water being produced, products being gases, products being lost or a gas evolved were often given by Candidates. If there is an alternative answer, check to see if there is any ECF credit possible
	i	FIRST CHECK ANSWER ON THE ANSWER LINE IF answer = 1.85 OR 1.845 g award 3 marks 	3	ALLOW ECF from incorrect $n(HNO_3)$ molar mass of SrCO ₃ = 147.6 (g mol ⁻¹) ALLOW ECF from incorrect $n(SrCO_3)$
	i	$n(\text{SrCO}_3) = \frac{0.0250}{2} = 0.0125 \text{ mol } \checkmark$ $m(\text{SrCO}_3) = 0.0125 \times 147.6 = 1.845 \text{ g OP} = 1.85 \text{ g } \checkmark$	3	n(SrCO ₃) Examiner's Comments The vast majority of candidates were able to
		= 0.0125 × 147.6 = 1.845 g OR 1.85 g √		complete this calculation arriving at the correct answer to score all three available marks. The most common error was in calculating the amount, in moles, of the SrCO ₃ from the stoichiometry given in the equation. This resulted in an answer which was twice that expected however two marks could still be obtained by applying error carried forward.
 				Answer = 1.845 g or 1.85 g
b	i	rate of reaction decreases AND concentration decreases / reactants are used up √	1	ALLOW reaction slows down ALLOW concentration of reactants decreases.
	i	less frequent collisions \checkmark	1	ALLOW fewer collisions per unit time OR collisions less often

I	ī		1	
				OR decreased rate of collision
				IGNORE less successful
				collisions / less collisions less
				chance of collisions
				Examiner's Comments
				Very few candidates were
				able to explain the change in
				the rate of the reaction during
				the first 200 seconds of the
				experiment. This relatively
				straightforward question
				required a statement that the
				rate decreases as the
				concentration of the reactants
				decreases due to there being
				less frequent collisions.
				Although a large number of
				candidates were able to state that the rate decreases few
				were able to explain why. This
				was possibly due to
				candidates having to apply
				their understanding in an
				unfamiliar context rather than
				from a lack of knowledge
	i i	Attempted tangent on graph drawn to line at approximately $t = 200 \text{ s} \checkmark$	1	
	1			
				ALLOW 1 SF up to calculator
				value,
				in range 5 × 10 ^{−4} to 8 × 10 ^{−4}
				IGNORE units
				IGNORE sign
		Gradient (y/x)		Examiner's Comments
		e.g. $\frac{0.20}{290}$ = 6.9 × 10 ⁻⁴ \checkmark		This was the first time AS
		жер		level candidates have been
	i			required to calculate a rate of
	i	8.2	1	reaction from a graph and
				many found this quite testing.
				Although many knew that a
				tangent was required only the
		^m e 53 303 366 218 23 389 353 489		most able candidates were
				able to arrive at a value for
				the gradient that was within
				the expected range. Candidates sometimes took
				as their values the point at which their tangent cut the
				axes rather than calculating

				the change in mass or change in time.
				Acceptable range 5 × 10^{-4} to 8 × 10^{-4}
	с	Flask OR beaker AND balance	1	DO NOT ALLOW round- bottomed flask.
		AND stopwatch OR stop clock OR other timing device \checkmark		IGNORE weighing scales
		Records mass at time intervals √	1	ALLOW 'weigh at time intervals'
		Time interval quoted between 10-50s √	1	Examiner's Comments This was the second question that required candidates to describe an experiment that they could have carried out as part of their course. Even if this experiment had not been completed in class, candidates should be able to recognise that mass needs to be measured over a period of time. As the reaction was between an acid and a carbonate a suitable named reaction vessel such as a beaker or flask was required. A balance was needed for mass measurement and a timing device to monitor time. A simple statement that mass should be recorded at a given time interval scored two marks with one mark being allocated to suitable apparatus. At this level it is expected that candidates will be familiar with the correct names for the apparatus required to carry out an investigation.
		Total	11	
8	а		2	ALLOW particles for molecules IGNORE atoms
		Increased rate AND		Response must imply a volume and not area

greater concentration of molecules / more molecules per (unit) volume \checkmark	ALLOW more molecules in
	the same space
	OR more molecules in the
	same volume
	OR same number of
	molecules in a smaller
	volume
	IGNORE molecules are closer
More collisions per second / more frequent collisions \checkmark	together (no idea of volume)
	ALLOW collisions more often
	OR increased rate of collision
	IGNORE more chance of
	collisions
	'more collisions' alone is not
	sufficient (<i>no rate</i>)
	IGNORE 'successful'
	Examiner's Comments
	The effect of pressure on
	reaction rate is well known by
	candidates at this level and
	many candidates scored one
	or two marks in this part. The
	examiners were encouraged
	that a significant proportion of
	the cohort scored the first
	mark by relating the increased
	rate to the increased
	concentration of the
	molecules, rather than vaguer
	responses in terms of the
	relative proximity of the
	molecules. Weaker responses
	focused on the equilibrium
	rather than an explanation of
	how the rate is affected.
	Candidates are advised to
	take note of key terms in
	questions, especially those in
	bold, as they often give
	-
	guidance as to what is expected.



					greater than the activation energy when a catalyst is used, was a common reason why only three marks were scored.
					ALLOW less heat (required) IGNORE references to pressure IGNORE references to less energy (<i>in question</i>) e.g. lowers E _a
	с		Allows reactions to take place at lower temperatures \checkmark	1	Examiner's Comments
					The strongest candidates identified that lower temperatures could be used with a catalyst and hence reduce the energy demand of a reaction.
			Total	7	
9		i	Number of Molecules	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Candidates do not need Ea on graph ALLOW particles instead of molecules on the y axis DO NOT ALLOW atoms instead of particles / molecules ALLOW ECF for the incorrect use of atoms (instead of molecules / particles) DO NOT ALLOW enthalpy on the x-axis
			axes labelled (number of) molecules and (kinetic) energy \checkmark		DO NOT ALLOW increase of
			Correct drawing of a two Boltzmann distributions i.e. both curves must start within the first small square nearest to the origin AND must not touch the x axis at high energy \checkmark		Maximum of curve for higher temperature to right AND lower than maximum of
			Drawing of Boltzmann distribution at two different temperatures with higher and lower temperature clearly		AND lower than maximum of lower temperature curve AND above lower temp line at

	identified (ie T₂>T₁) ✓		higher energy Higher temp line should intersect lower temp line once
	QWC - (At a higher temperature) more molecules have energy above activation energy OR greater area under the curve above the activation energy√		DO NOT ALLOW lower activation energy QWC requires more molecules have or exceed activation energy / Ea. IGNORE more molecules have enough energy to react for the QWC mark (as not linked to Ea) ORA if states the effect when the temperature is lower IGNORE (more) successful collisions
			Examiner's Comments Candidates are very familiar with the Boltzmann distribution curve and there were many examples of excellent diagrams to illustrate the effect of increasing the temperature on the rate of reaction. Occasionally curves that did not start at the origin and/or ended up touching the x- axis were seen, but these were less common than in previous sessions. Candidates should be aware that, when two curves are required, each curve should be clearly labelled. Unlabelled curves was a common reason why candidates only scored three marks and not four.
i	(Decreasing the pressure) decreases the rate of reaction AND Decreased concentration of molecules OR Number of molecules remains the same but the volume increases OR Less molecules per (unit) volume √	2	Correct effect on rate must be linked to reason for the first marking point. ALLOW molecules are further apart IGNORE less crowded ALLOW particles or atoms for molecules ALLOW 'space' for volume DO NOT ALLOW area instead of volume
	Less frequent collisions ✓		

					ALLOW collisions occur less often OR decreased rate of collision IGNORE less chance of collisions 'less collisions' alone is not sufficient IGNORE successful Examiner's Comments Most candidates recognised that a decrease in pressure would lower the concentration of the particles resulting in a decreased rate of reaction. The examiners were encouraged that a significant proportion of the cohort scored the second mark by relating the decreased rate with the frequency of collisions, rather than vaguer responses just in terms of collisions.
			Total	6	
1 0	а	i	Time plotted along <i>x</i> -axis AND sensible scale that uses most of graph paper AND both axes labelled (1) Points plotted accurately (1) Correct curve of best fit (1)	3	
		i	Evidence of tangent drawn correctly on the graph from the origin (1) $(0.023/25) = 9.2 \times 10^{-4} \pmod{\text{dm}^{-3} \text{s}^{-1}} (1)$	2	allow answer between 8 × 10^{-4} and 1 × 10^{-3} allow answer from line drawn through origin and data point at 50 s: 0.024/50 = 4.8 × 10^{-4}
		i i	(Differ) initial gradient steeper AND (Same) curve reaches same height	1	look on graph paper for this answer
	b	i i		1	

	Calculation of rate from the gradient of tangent drawn e.g. rate = $\overline{94}$ = 0.68 (cm ³ s ⁻¹) (1)		awarded from a tangent allow ecf for tangent drawn at different time from 50 s allow ±10% of gradient of tangent drawn allow 2 sig figs up to calculator value allow trailing zeroes, e.g. 0.7 for 0.070 ignore '-' sign for rate Note: if candidate calculates rate via ln 2 method, consult with TL
	Total	5	